
http://www.egovframe.go.kr/wiki/doku.php?id=egovframework:rte2:brte:batch_core:listener

Listener

Outline

You can add composition of jobs by setting event for each step (Job, Step, Chunk, Read, Process, Write). You can

define such events in listener.

Description

JobListener(Intercepting Job Execution)

While execution of Job is underway, the user can take the best advantage of the events occurred to keep the user

alerted. In eGovFramework, SimpleJob calls JobListener to do so.

public interface JobExecutionListener {

 void beforeJob(JobExecution jobExecution);

 void afterJob(JobExecution jobExecution);

}

JobListeners can be added to SimpleJob by way of the listeners of Job, as follows:

<job id="footballJob">

 <step id="playerload" parent="s1" next="gameLoad"/>

 <step id="gameLoad" parent="s2" next="playerSummarization"/>

 <step id="playerSummarization" parent="s3"/>

 <listeners>

 <listener ref="sampleListener"/>

 </listeners>

</job>

Note that afterJob is to be called regardless of success or failure of job. If needed, Jobexecution should define success

and/or failure of suc job.

public void afterJob(JobExecution jobExecution){

 if(jobExecution.getStatus() == BatchStatus.COMPLETED){

 //job success

 }

 else if(jobExecution.getStatus() == BatchStatus.FAILED){

 //job failure

 }

}

✔ Annotations falling under the interface JobExecutionListener

Annotations Description

@BeforeJob Called before Job

@AfterJob Called after Job

StepListener(Intercepting Step Execution)

StepExecutionListener

http://www.egovframe.go.kr/wiki/doku.php?id=egovframework:rte2:brte:batch_core:listener

StepExecutionListener is one of the most typical form of listener in execution of Step and keeps the user notified of

the Step information before and after Step.

public interface StepExecutionListener extends StepListener {

 void beforeStep(StepExecution stepExecution);

 ExitStatus afterStep(StepExecution stepExecution);

}

By way of ExitStatus, the return type of afterStep, the user is granted an opportunity to edit exit-code returned.

Annotations for the foregoing interface are a sfollows:

✔ Annotations for the interface StepExecutionListener:

Annotations Description

@BeforeStep Called before Step

@AfterStep Called after Step

ChunkListener

Chunk processes the items within the scope of transaction. While committing transaction, ChunkListener executes the

implementation logic before or after Chunk processing.

public interface ChunkListener extends StepListener {

 void beforeChunk();

 void afterChunk();

}

The method beforeChunk is called before ItemReader implements reading, whereas afterChunk is called before

rollback and after Chunk commitment.

✔ Annotations for the interface ChunkListener:

Annotations Description

@BeforeChunk Called before Chunk

@AfterChunk Called after Chunk

✔ You may not apply ChunkListeners unless chunk is declared, such as TaskletStep.

ItemReadListener

You can keep the skip log to have some logics processed in the future. In case read error is thrown,

ItemReaderListener processes skip.

public interface ItemReadListener<T> extends StepListener {

 void beforeRead();

 void afterRead(T item);

 void onReadError(Exception ex);

}

The method beforeRead is called before ItemReader implements reading.

The method afterRead is called to transfer the items read when the implementation of read is successful.

http://www.google.com/search?hl=en&q=allinurl:exception+java.sun.com&btnI=I'm%20Feeling%20Lucky

The method onReadError is called when error is thrown in implementation of reading. Exception information is thus

thrown.

✔ Annotations for the interface ItemReadListener:

Annotations Description

@BeforeRead Called before Read

@AfterRead Called after Read

@OnReadError Called when error is thrown

ItemProcessListener

Item processing has its own listener like ItemReadListener does.

public interface ItemProcessListener<T, S> extends StepListener {

 void beforeProcess(T item);

 void afterProcess(T item, S result);

 void onProcessError(T item, Exception e);

}

The method beforeProcess is called before ItemProcessor executes processing.

The method afterProcess is called upon successful processing of items.

You can keep the error log as onProcessError is thrown when relevant.

✔ Annotations for the interface ItemProcessListener:

Annotations Description

@BeforeProcess Called before Process

@AfterProcess Called after Process

@OnProcessError Called when error is thrown in process

ItemWriteListener

You can have the listener called while ItemWriteListener writes items.

public interface ItemWriteListener<S> extends StepListener {

 void beforeWrite(List<? extends S> items);

 void afterWrite(List<? extends S> items);

 void onWriteError(Exception exception, List<? extends S> items);

}

The method beforeWrite is called before ItemWrite implements writing.

The method afterWrite is called to transfer the items written when the implementation of writing is successful.

The method onWriteError is called when error is thrown in implementation of writing. Exception information and

items, aggregated in the form of a list, are thrown.

✔ Annotations for the interface ItemWriteListener:

Annotations Description

http://www.google.com/search?hl=en&q=allinurl:exception+java.sun.com&btnI=I'm%20Feeling%20Lucky
http://www.google.com/search?hl=en&q=allinurl:exception+java.sun.com&btnI=I'm%20Feeling%20Lucky

@BeforeWrite Called before Write

@AfterWrite Called after Write

@OnWriteError Called when error is thrown in writing

SkipListener

Despite itemReadListener, ItemProcessListener and ItemWriteListner keeping the user notified of errors thrown, Skip

is always left unnoticed. Refer to the following interface that traces the item skipped:

public interface SkipListener<T,S> extends StepListener {

 void onSkipInRead(Throwable t);

 void onSkipInProcess(T item, Throwable t);

 void onSkipInWrite(S item, Throwable t);

}

onSkipInRead is called when skip takes place while reading. Note, however, that rollback must be kept notified as

Skip has taken place more than once in that case.

The method onSkipInWrite is called wiehn Skip takes place in writing, in which case the concerned item, successfully

read, provides itself as a factor.

✔ Annotations for the interface SkipListener:

Annotations Description

@OnSkipInRead Called when Skip takes place in reading

@OnSkipInWrite Called when Skip takes place in writing

@OnSkipInProcess Called when Skip takes place in Process

SkipListeners and Transactions

One of the most common options of using SkipListener is to keep the skipped item recorded for future use in manual

processing or uniform processing.

✔ With transaction rollback highly likely, Spring guarantees you as follows:

1. The proper skip method is called once for each item (deemed appropriate for the error occurred).

2. SkipListener is always called before transaction commit, in which case the transaction resource called by listener

cannot be rolled back as fallen through in ItemWriter.

Example

 Using Annotations

public class EventNoticeListener {

 @Autowired

 EgovEmailEventNoticeTrigger egovEmailEventNoticeTrigger;

 // Implemented upon completion of Job

 @AfterJob

 public ExitStatus sendJobNotice(JobExecution jobExecution) {

 egovEmailEventNoticeTrigger.invoke(jobExecution);

http://www.google.com/search?hl=en&q=allinurl:throwable+java.sun.com&btnI=I'm%20Feeling%20Lucky
http://www.google.com/search?hl=en&q=allinurl:throwable+java.sun.com&btnI=I'm%20Feeling%20Lucky
http://www.google.com/search?hl=en&q=allinurl:throwable+java.sun.com&btnI=I'm%20Feeling%20Lucky

 ...

 }

 // Implemented upon completion of Step

 @AfterStep

 public ExitStatus sendStepNotice(StepExecution stepExecution) {

 egovEmailEventNoticeTrigger.invoke(stepExecution);

 ...

 }

 // Implemented when Error takes place on Read

 @OnReadError

 public void sendErrorNotice(Exception e) {

 egovEmailEventNoticeTrigger.invoke(e);

 ...

 }

}

EgovPre/PostProcessor

eGovFramework categorizes various listeners by composition of batch (Job, Step, Chunk) and pre/post processing to

provide the processor separately identifiable. Processors are called by <listener> of the configuration file for Job,

calling configuration as follows:

✔ Note that the following EgovSampleXXXProcessor assumes inheritance of eGovFramework Procesor.

Job Processor

Category

Class Method Parameter Description

EgovJobPreProcessor beforeJob() JobExecution Called before Job

http://www.google.com/search?hl=en&q=allinurl:exception+java.sun.com&btnI=I'm%20Feeling%20Lucky
http://www.egovframe.go.kr/wiki/lib/exe/detail.php?id=egovframework:rte2:brte:batch_core:listener&media=egovframework:rte2:brte:batch_core:processor_gmgt_structure.png

EgovJobPostProcessor afterJob() JobExecution Called after Job

public class EgovJobPreProcessor extends JobExecutionListenerSupport {

 /**

 * Parts called before execution of Job

 */

 public void beforeJob(JobExecution jobExecution) {

 }

}

public class EgovJobPostProcessor extends JobExecutionListenerSupport {

 /**

 * Parts called after execution of Job

 */

 public void afterJob(JobExecution jobExecution) {

 }

}

Settings

The Job Processor defined by the user that inherited the foregoing class configures, using <listeners>, as follows:

<job id="ProcessorJob" xmlns="http://www.springframework.org/schema/batch">

 <listeners>

 <listener ref="jobListener" />

 </listeners>

 <step id="ProcessorStep">

 <tasklet>

 <chunk reader="itemReader" writer="itemWriter" commit-interval="2"/>

 </tasklet>

 </step>

</job>

<bean id="jobListener" class="User-defined job processor class" />

Step Processor

Category

Class Method Parameter Description

EgovStepPreProcessor beforeStep() StepExecution Called before Step

EgovStepPostProcessor afterStep() StepExecution Called after Step

public class EgovStepPreProcessor<T, S> extends StepListenerSupport<T, S> {

 /**

 * Parts called before execution of Step

 */

 public void beforeStep(StepExecution stepExecution) {

 }

}

public class EgovStepPostProcessor<T, S> extends StepListenerSupport<T, S> {

 /**

 * Parts called after execution of Step

 */

 public ExitStatus afterStep(StepExecution stepExecution) {

 return null;

 }

}

Settings

The Step Processor defined by the user that inherited the foregoing class configures, using <listeners>, as follows:

<job id="ProcessorJob" xmlns="http://www.springframework.org/schema/batch">

 <step id="ProcessorStep">

 <tasklet>

 <chunk reader="itemReader" writer="itemWriter" commit-interval="2"/>

 </tasklet>

 <listeners>

 <listener ref="stepListener" />

 </listeners>

 </step>

</job>

<bean id="stepListener" class="User-defined step processor class" />

Chunk Processor

Category

Class Method Parameter Description

EgovChunkPreProcessor beforeChunk() N/A Called before Chunk

EgovChunkPostProcessor afterChunk() N/A Called after Chunk

public class EgovChunkPreProcessor extends ChunkListenerSupport {

 /**

 * Parts called before execution of Chunk

 */

 public void beforeChunk() {

 }

}

public class EgovChunkPostProcessor extends ChunkListenerSupport {

 /**

 * Parts called after execution of Chunk

 */

 public void afterChunk() {

 }

}

Settings

The Chunk Processor defined by the user that inherited the foregoing class configures, using <listeners>, as follows:

<job id="ProcessorJob" xmlns="http://www.springframework.org/schema/batch">

 <step id="ProcessorStep">

 <tasklet>

 <chunk reader="itemReader" writer="itemWriter" commit-interval="2">

 <listeners>

 <listener ref="chunkListener" />

 </listeners>

 </chunk>
 </tasklet>

 </step>

</job>

<bean id="chunkListener" class="User-defined chunk processor class" />

Example

Pre/Post Process Examples

References

http://static.springsource.org/spring-batch/reference/html/configureJob.html#interceptingJobExecution

http://static.springsource.org/spring-batch/reference/html/configureStep.html#interceptingStepExecution

http://www.egovframe.go.kr/wiki/doku.php?id=egovframework:rte2:brte:batch_example:pre_post_process_mgmt
http://static.springsource.org/spring-batch/reference/html/configureJob.html#interceptingJobExecution
http://static.springsource.org/spring-batch/reference/html/configureStep.html#interceptingStepExecution

